Band 4 (22). $R_{f} 0.38$. obtained ($20 \mathrm{mg} ; 11 \%$ yield) as a purple solid. Small portion recrystallized from $\mathrm{CHCl}_{3} /$ methanol, giving small red needles. Mp: $>300^{\circ} \mathrm{C}$. Vis: $404 \mathrm{~nm}(\epsilon 43800), 588$ (35300). NMR (360 MHz): see Table II for chemical shift assignments. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{NiO}_{3}: \mathrm{C}, 66.57 ; \mathrm{H}, 6.09 ; \mathrm{N}, 9.41$. Found: $\mathrm{C}, 66.78 ; \mathrm{H}$, 5.68; N, 9.48. MS (FAB positive ion, thioglycerol matrix): 595 [22.2, $(\mathrm{M}+\mathrm{H})^{+}$], $594\left(23.6, \mathrm{M}^{+}\right), 563\left(37.4, \mathrm{M}^{+}-\mathrm{OMe}\right), 181(100, \mathrm{bp}$, thioglycerol).

Band 5 (23). $R_{f} 0.30$. obtained ($10 \mathrm{mg} ; 5 \%$ yield) as an orange solid. Vis (Figure 2): $298 \mathrm{~nm}(\epsilon 17600) ; 426$ (7800), 532 (29000). NMR (360 MHz): see Figure 2 for spectra and Table I for chemical shift assignments. MS (FAB positive ion, thioglycerol matrix): 599 [100, (M $\left.+\mathrm{H})^{+}\right], 583(7.2), 567\left(22.0, \mathrm{M}^{+}-\mathrm{OMe}\right), 539\left(8.8, \mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}\right)$.

Acknowledgment. This research was supported by a grant from the National Science Foundation (CHE-81-20891).

Spontaneous and Olefin-Promoted Reductive Elimination of η^{3}-Allyl(organo)palladium(II) Complexes: Mechanistic and Molecular Orbital Analysis

Hideo Kurosawa, ${ }^{\text {*1a }}$ Mitsuhiro Emoto, ${ }^{12}$ Hiroaki Ohnishi, ${ }^{19}$ Kunio Miki, ${ }^{19}$ Nobutami Kasai, ${ }^{1 \mathrm{~h}}$ Kazuyuki Tatsumi, ${ }^{\text {1b }}$ and Akira Nakamura ${ }^{\text {1b }}$
Contribution from the Department of Applied Chemistry, Osaka University, Suita, Osaka 565 , Japan, and the Department of Macromolecular Science, Osaka University, Toyonaka, Osaka 560, Japan. Received March 11, 1987

Abstract

Kinetic studies are reported on spontaneous and olefin-promoted reductive elimination of complexes of $\mathrm{Pd}\left(\eta^{3}-\mathrm{allyl}\right)(\mathrm{Ar})(\mathrm{L})$ (1: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-2,5 ; \mathrm{L}=\mathrm{PR}_{3}, \mathrm{AsR}_{3}$), which affords high yields of the coupling products, allylbenzene derivatives. The rate of the spontaneous process was not affected by addition of free ligands, L, suggesting no significant participation of a η^{1}-allylpalladium species nor of a 14 -electron intermediate arising from ligand dissociation during the C - C bond-forming step. Reductive elimination of structurally rigid $\operatorname{Pd}\left(\eta^{1}\right.$-allyl)(Ar)(dppe) proceeded more slowly than that of 1 . The rate of the olefin-promoted process for $\mathbf{1}\left(\mathrm{L}=\mathrm{AsR}_{3}\right)$ showed first-order dependence on the concentration of olefins and inverse dependence on that of AsR_{3}. A reaction scheme consistent with this observation has been proposed which involves initial ligand exchange between AsR_{3} of 1 and olefins to form an intermediate, $\mathrm{Pd}\left(\eta^{3}\right.$-allyl)(Ar)(olefin), followed by the $\mathrm{C}-\mathrm{C}$ coupling step. These types of olefin complexes for $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{HCl}_{4}-2,3,5,6$ were generated separately in solution at low temperature and characterized by ${ }^{1} \mathrm{H}$ NMR spectra. Reactivity patterns of the reductive elimination of these olefin complexes unambiguously confirmed the kinetically implicated trend described above, namely they are by far more reactive than the corresponding AsPh Al_{3} complex, and the complex having the more electron-withdrawing olefin gives the coupling product more rapidly. Extended Hückel molecular orbital calculations on $\operatorname{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)\left(\mathrm{CH}_{3}\right) \mathrm{L}\left(\mathrm{L}=\mathrm{PH}_{3}, \mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ and related species have been carried out. The MO analyses satisfactorily explain the origin of the above-mentioned reactivity patterns, which are apparently specific to the η^{3}-allyl complexes.

η^{3}-Allyl complexes of transition metals are important reagents and intermediates in many organic transformations. ${ }^{2-5}$ Recently, increasing attention has been paid to the synthetic value of reductive elimination of η^{3}-allylmetal complexes. ${ }^{3-5}$ Nevertheless, mechanistic studies of this process are scarce aside from some

[^0]stereochemical examinations, ${ }^{6}$ in contrast to remarkable progress concerning mechanistic understanding of the reductive elimination of those complexes that contain only η^{1}-bound alkyl and aryl ligands. ${ }^{7-9}$ However, knowledge in the latter field cannot always be transferable to the η^{3}-allylmetal chemistry, for the intrinsic difference between the nature of the η^{3}-allyl-metal and the η^{1} -alkyl-metal bond may lead to a considerable difference in reactivity patterns of two classes of complexes. Well-known examples include the attack of certain nucleophiles at the metalbound η^{3}-allyl ligand from the anti side, ${ }^{2}$ whereas very few equivalents of this step are found in the chemistry of the η^{1}-alkyl complexes.

[^1]We thought the following problems were especially important in the reductive elimination of the η^{3}-allyl complexes. (1) What is the type of intermediate, η^{1} - or η^{3}-allyl species, that is really participating in the $\mathrm{C}-\mathrm{C}$ bond formation step? This is of particular importance, since η^{3}-allylmetal complexes are very prone to undergo η^{3} - to η^{1}-allyl interconversion ${ }^{10}$ and it has strong bearing on the asymmetric synthesis ${ }^{48}$ namely, the identity of the diastereoor enantio-face of the η^{3}-allyl ligand is lost during such interconversion. (2) How does the electronic property of the ligand affect the barrier to the reductive elimination of the intermediate, be it in the η^{3} - or η^{1}-allyl form? The ligand may exert its electronic effect exactly at the $\mathrm{C}-\mathrm{C}$ bond formation step or it may sometimes do so before this step is reached, as exemplified by crucial ligand dissociation to form a three-coordinate intermediate during the reductive elimination of $\mathrm{PdR}_{2} \mathrm{~L}_{2} .{ }^{7 \mathrm{a}-\mathrm{c}}$

There has arisen an indication that the ligand electronic effect is especially important in the reductive elimination of the η^{3}-allyl complexes. In previous papers ${ }^{11.12}$ we showed that the concerted, cis $\mathrm{C}-\mathrm{C}$ coupling in η^{3}-allyl(aryl)palladium complexes of type 1 is accelerated by the addition of electron-withdrawing olefins. This methodology of employing olefinic additives not as a substrate but as a mediator has helped raise the synthetic value of the reductive elimination of η^{3}-allylpalladium complexes. ${ }^{3}$ Interestingly, the olefinic additives were shown to have no effect on the reductive elimination of dialkylpalladium complexes containing PR_{3} ligands, ${ }^{7 \mathrm{~b}, 13 \mathrm{a}}$ although the reaction of different dialkyl complexes, $\mathrm{PdR}_{2}(\mathrm{bpy})$, was affected by olefins. ${ }^{13 \mathrm{~b}}$

In the hope of attaining solutions to the problems described above, we have carried out more extensive synthetic and kinetic experiments of the reductive elimination of η^{3}-allylpalladium complexes. Emphasis has been laid on the independent confirmation of the reaction scheme derived from the kinetic studies. Then the work was further extended to detailed molecular orbital analysis based on the extended Hückel method. The new results of these studies are now described.

Results and Discussion

Spontaneous Reductive Elimination of 1 and 2. ${ }^{14}$ Complexes $1 \mathrm{a}, 1 \mathrm{f}-\mathrm{i}$, and $\mathbf{1 k}$ were prepared from the corresponding η^{3}-allylpalladium chlorides and $\mathrm{Ar} \mathrm{ZnCl} . \mathbf{1 b}-\mathbf{e}$ were formed in solutions in quantitative yields (by ${ }^{1} \mathrm{H}$ NMR) from 1 f and the appropriate L. The η^{1}-allyl complex 2 was prepared in a manner similar to

[^2]Table I. Rate Constants (k_{1}) for Equation 2 in the Presence of L^{a}

complex	L	concn, M	$10 k_{1}, \mathrm{~h}^{-1}$
$\mathbf{1 a}$	PPh_{3}	0.0570	2.12^{b}
		0.120	2.11
1e	$\mathrm{P}(\mathrm{OPh})_{3}$	0.200	2.01
		0.130	10.3
1f	AsPh_{3}	0.260	9.98
		0.0800	0.377^{b}
		0.200	0.438

${ }^{a}$ In toluene at $30^{\circ} \mathrm{C}$. Initial concentrations of the complexes were $0.020 \mathrm{M} .{ }^{b}$ Initial rate.

Table II. Kinetic Data ${ }^{a}$ for Equation 2

complex	solvent	$10 k_{1}, \mathrm{~h}^{-1}$	$\Delta H^{*}, \mathrm{~kJ}$ $\mathrm{~mol}^{-1}$	$\Delta \mathrm{K}^{*}, \mathrm{~J}$ $\mathrm{~mol}^{-1}$
$\mathbf{1 a}$	toluene	2.08	95 ± 2	-14 ± 6
	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	1.24	99 ± 5	-5 ± 15
	MeCN $/ \mathrm{THF}(5 / 3)^{b}$	0.954	99 ± 1	-8 ± 3
$\mathbf{1 b}$	toluene	4.39	90 ± 1	-24 ± 3
	acetone	2.00	92 ± 3	-22 ± 9
$\mathbf{1 c}$	toluene	0.887	101 ± 1	0 ± 3
$\mathbf{1 d}$	toluene	0.783	101 ± 1	0 ± 3
$\mathbf{1 e}$	toluene	10.1	93 ± 2	-6 ± 4
$\mathbf{1 f}$	toluene	0.408	105 ± 1	7 ± 3
$\mathbf{1 i}$	toluene	0.257	102 ± 2	-7 ± 7
$\mathbf{2}^{c}$	toluene	0.578	114 ± 3	27 ± 9

${ }^{a}$ At $30^{\circ} \mathrm{C} .{ }^{b}$ By volume. ${ }^{\text {c }}$ At $40^{\circ} \mathrm{C}$.
that for the polyhaloaryl analogues. ${ }^{16}$
Complexes 1 underwent spontaneous decomposition in toluene under nitrogen at $\geq 0^{\circ} \mathrm{C}(\mathbf{1 a - i})$ or $\geq-30^{\circ} \mathrm{C}(\mathbf{1 k})$ to give the coupling product (allylbenzenes). Stoichiometry of the reaction (eq 1) was very high ($>90 \%$) when 1 was decomposed in the

presence of a large excess of $L([L] /[1] \geq 4) .{ }^{17}$ Of particular relevance to mechanistic considerations is the fact that addition of L to a CDCl_{3} or toluene- d_{8} solution of 1 did not result in appearance of any ${ }^{1} \mathrm{H}$ NMR resonances assignable to new species. All that we could observe was broadening and coalescence of the syn-anti allyl proton resonances, ${ }^{18}$ which may be ascribed to occurrence of eq 2. ${ }^{10,166}$ It should be stressed here that the η^{1}-allyl

4
species, 3 and 4, are formed only transiently or their equilibrium concentrations are extremely low, as judged from almost no change of the allyl proton chemical shifts except for averaging of the coalescing protons' shifts.
In Table I are shown the rate constants for eq 1 determined in the presence of varying amounts of L. From Table I it is apparent that k_{1} of eq 1 is not affected by the amount of L added. In Table II are summarized rates and activation parameters for various complexes in several solvents.
(16) (a) Numata, S.; Okawara, R.; Kurosawa, H. Inorg. Chem. 1977, 16, 1737. (b) Kurosawa, H.; Urabe, A.; Miki, K.; Kasai, N. Organometallics 1986, 5, 2002.
(17) Under these conditions the rate was first order with respect to [1] up to more than 2 half-lives. The first-order rate constants for 1 b in the presence of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}(0.164 \mathrm{M})$ were independent of the initial concentrations of $1 \mathrm{~b}(0.01,0.02,0.04 \mathrm{M})$. Thermolysis in the absence of L afforded the allylbenzenes (ca. 30-50\%) and low yields of biphenyl, benzene, or 1,4-dichlorobenzene, together with unidentified Pd complexes and Pd black.
(18) On adding $\mathrm{AsPh}_{3}(\mathrm{As} / \mathrm{Pd}=4)$ to If at room temperature, all the allyl proton resonances became only broader. Addition of $\mathrm{PPh}_{3}(\mathrm{P} / \mathrm{Pd}=4)$ to la at room temperature resulted in coalescence of the syn and anti protons cis to PPh_{3} and broadening (with disappearance of ${ }^{31} \mathrm{P}$ coupling) of the syn and anti protons at the other site.

Table III. Rate Constants for Reactions of $\mathbf{1 f}-\mathbf{h}$ with Olefins ${ }^{a}$

complex	olefin	$10^{4} k_{2}, \mathrm{~h}^{-1}$	$10^{4} k_{3}, \mathrm{M}$	$k_{2} / k_{3}, \mathrm{M}^{-1} \mathrm{~h}^{-1}$
$1 f$	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	1.90 ± 0.30	1.37 ± 0.35	1.39 ± 0.57
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$	2.57 ± 0.19	0.75 ± 0.38	3.4 ± 2.0
	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OAc}$	1.45 ± 0.21	6.4 ± 1.3	0.227 ± 0.079
	$\mathrm{CH}_{2}=\mathrm{CHCN}$	24.3 ± 1.3		
	$\mathrm{CH}_{2}=\mathrm{CHCOOMe}$	45.4 ± 1.2		
	$\mathrm{Z}-\mathrm{MeOOCCH}=\mathrm{CHCOOMe}$	150 ± 6		
	$\mathrm{E}-\mathrm{MeOOCCH}=\mathrm{CHCOOMe}$	$(2.51 \pm 0.09) \times 10^{3}$		
	$\mathrm{E}-\mathrm{NCCH}=\mathrm{CHCN}$	$(4.78 \pm 0.77) \times 10^{3}$	$(1.02 \pm 0.17) \times 10^{3}$	4.7 ± 1.5
1g	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	7.81 ± 0.49	4.86 ± 0.74	1.61 ± 0.35
1h	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$	0.745 ± 0.054	0.88 ± 0.21	0.85 ± 0.26

${ }^{a}$ In toluene at $0{ }^{\circ} \mathrm{C}$. For rate expression, see eq 4 and 5 .

Thermolysis of 2 also afforded good yields of the coupling product, even though good first-order kinetics were observed up to only ca. 60% conversion. Again the rate was not affected by added dppe ligand. As shown in Table II, this reaction had considerably smaller rate constants and larger ΔH^{\ddagger} values than those for the reaction of 1 .

In the reaction of cis- $\mathrm{PdMe}_{2}\left(\mathrm{PR}_{3}\right)_{2}$, a reaction scheme involving reversible dissociation of PR_{3} to form a T -shaped intermediate, followed by the C-C coupling step, was proposed ${ }^{72, b}$ and has received theoretical support. ${ }^{7 c}$ On the other hand, the results in Table I showing k_{1} independent of the amount of L added may exclude the prior dissociation of L from 1 . These data also indicate that the second molecule of L is not involved in the rate-determining step, excluding the 5 -coordinate intermediate $\operatorname{Pd}\left(\eta^{3}\right.$-al$\mathrm{lyl})(\mathrm{Ar}) \mathrm{L}_{2}$ and the η^{1}-allyl intermediate 4. As shown before, 4 exists only transiently. On the basis of the kinetic results of Table I solely, we cannot distinguish between the $\mathrm{C}-\mathrm{C}$ coupling directly from 1 or from a 3 -coordinate η^{1}-allyl intermediate 5 . At the moment we prefer the direct path in view of the kinetic parameters showing little solvent dependence (Table II), whereas these parameters for the dissociative reductive elimination of cis$\mathrm{Pd} \mathrm{Me}_{2}\left(\mathrm{PR}_{3}\right)_{2}$ were remarkably solvent dependent. ${ }^{7 \mathrm{a}}$ Further molecular orbital analysis of these processes will be given in a later section.

5
The rate data of Table II for $\mathbf{1 a}$-d indicate the lower reactivity of the complex having the better donating ligand, in agreement with the theoretical prediction. ${ }^{7 c}$ Of particular note in Table II is the lower reactivity of $\mathbf{1 f}$ than of $\mathbf{1 a - d}$. The order of $k_{1}\left(\mathrm{PPh}_{3}\right.$ $>A s \mathrm{Ph}_{3}$) is the same as that of the rate of H_{2} elimination from $\left[\mathrm{IrH}_{2}(\mathrm{CO})_{2} \mathrm{~L}_{2}\right]^{+} .{ }^{19}$ Furthermore, oxidative addition of $\mathrm{IrCl}(\mathrm{C}$ $\mathrm{O}) \mathrm{L}_{2}$ is more favored for $\mathrm{L}=\mathrm{AsPh}_{3}$ than for $\mathrm{L}=\mathrm{PPh}_{3}{ }^{20}$ These facts altogether appear to point to the notion that the stability of the PPh_{3} complexes relative to that of the AsPh_{3} complexes is increased more as the oxidation state of the metal atom becomes lower. This trend could be explained if we assume more π-accepting character for PPh_{3} than for AsPh_{3} and/or more σ-donating character for AsPh_{3} than for PPh_{3}. Although the significance of π-interaction in the metal-phosphine bond remains controversial, ${ }^{21}$ enhancement of the $\mathrm{C}-\mathrm{C}$ coupling by coordination of a better π-acid ${ }^{22}$ was manifested in the reaction of 1 with olefins, as described next.
Kinetics of Olefin-Promoted Reductive Elimination of 1. Addition of some olefins (e.g., fumaronitrile, allyl chloride) to a toluene solution of 1 resulted in rapid formation of the coupling product in high yields even at $0^{\circ} \mathrm{C}$ for the dichlorophenyl analogues and $-50^{\circ} \mathrm{C}$ for the phenyl analogue. Stoichiometry of the reaction with allyl chloride is given in eq 3 , where a very high yield
(19) Mays, M. J.; Simpson, R. N. F.; Stefanini, F. P. J. Chem. Soc. A 1970, 3000.
(20) Deeming, A. J.; Shaw, B. L. J. Chem. Soc. A 1969, 1802.
(21) Reference $2 \mathrm{a}, \mathrm{p} 54$.
(22) The higher reactivity of $\mathbf{1 e}$ than the others in Table II may be compatible with the greater π-accepting ability of $\mathrm{P}(\mathrm{OPh})_{3}$ than $\mathrm{PR}_{3} .{ }^{21}$
of the η^{3}-allylpalladium chloride was confirmed by ${ }^{1} \mathrm{H}$ NMR spectra. The reaction of $\mathbf{1}$ with olefins other than allyl chloride would have given $\mathrm{Pd}(0)$ complexes whose composition is a function of the ratio of [olefin]/[L] employed. However, precise structure of such products was not determined.

The acceleration of the reaction of 1 by the olefins was compensated for considerably by adding PPh_{3} or AsPh_{3}. Because of the potential reactivity of PPh_{3} with those olefins employed, kinetic measurements were made for the reaction of 1 f at $0^{\circ} \mathrm{C}$ in the presence of varying amounts of $\mathrm{AsPh}_{3}{ }^{23 \mathrm{a}}$ Fairly clean first-order dependence of [1f] was observed up to ca. 2 half-lives in the presence of rather low concentrations of $\mathrm{AsPh}_{3}\left(\left[\mathrm{AsPh}_{3}\right]=2.2\right.$ $\left.\times 10^{-4}-2.2 \times 10^{-3} \mathrm{M}\right)$ for the reaction of allyl chloride $\left(\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\right]\right.$ $=0.3-2.46 \mathrm{M})$ or high amounts of $\mathrm{AsPh}_{3}\left(\left[\mathrm{AsPh}_{3}\right]=0.02-0.4\right.$ M) for the reactions of other olefins ($[$ olefin $]=0.05-2.3 \mathrm{M}$) ${ }^{23 \mathrm{~b}}$

From linear plots of $k_{\text {obsd }}$ vs. [olefin] and $1 / k_{\text {obsd }}$ vs. [AsPh h_{3}] (see supplementary material), we found that the rate obeyed eq 4 for the reaction of allyl chloride and fumaronitrile. Similar results were obtained for the reaction of allyl bromide and acetate with $\mathbf{1 f}$ and that of allyl chloride with $\mathbf{1 g}$ and $\mathbf{1 h}$. For the reaction

$$
\begin{equation*}
\text { rate }=k_{\text {obsd }}[\mathbf{1}]=\left\{k_{2}[\text { olefin }] /\left(k_{3}+\left[\mathrm{AsR}_{3}\right]\right)\right\}[\mathbf{1}] \tag{4}
\end{equation*}
$$

of olefins other than allylic electrophiles and fumaronitrile, it was difficult to estimate meaningfully large intercepts in linear plots of $1 / k_{\text {obsd }}$ vs. [AsPh_{3}] (see supplementary material). This leads to eq 5 . Table III summarizes k_{2} and k_{3} values determined for several olefins.

$$
\begin{equation*}
\text { rate }=k_{\text {obsd }}[1]=\left\{k_{2}[\text { olefin }] /\left[\text { AsR }_{3}\right]\right\}[1] \tag{5}
\end{equation*}
$$

Since no adduct formation occurs between 1f and AsPh_{3} as described before, we suggest the inverse dependence of the rate on $\left[\mathrm{AsR}_{3}\right]$ as due to dissociation of AsR_{3} prior to the $\mathrm{C}-\mathrm{C}$ coupling step. Consistent with eq 4 are Schemes I and II. In Scheme I a steady-state approximation is applied to the concentration of intermediate 6 , leading to $k_{2}=k_{4} k_{5} / k_{-4}$ and $k_{3}=k_{5} / k_{-4}$. Scheme II involves a rapid preequilibrium (eq 8) to form 3 -coordinate intermediate 7 , followed by a slow reaction of 7 with the olefin to give the product, leading to $k_{2}=k_{6} K_{\text {diss }}$ and $k_{3}=K_{\text {diss }}$.

Scheme II can readily be excluded, since k_{3} for the reaction of $1 \mathbf{f}$ varies considerably as the olefin changes (Table III), while this scheme requires constant $k_{3}\left(=K_{\text {diss }}\right)$ values irrespective of the olefins. Moreover, Scheme II should yield constant k_{2} / k_{3} $\left(=k_{6}\right)$ values for a given olefin irrespective of the nature of AsR ${ }_{3}$. However, this is not the case as shown by the increase of k_{2} / k_{3} for the reaction of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$ in the order $\mathbf{1 h}<\mathbf{1 f}<\mathbf{1 g}$ (Table III). This order is explained in terms of the ease of ligand exchange
(23) (a) Half-lives of these kinetic runs never exceeded 70 h , which is sufficiently smaller than the half-life of spontaneous reductive elimination of If at $0^{\circ} \mathrm{C}(1700 \mathrm{~h})$, estimated from data of Table II, as to eliminate the contribution of the latter process. (b) At the concentrations of AsPh_{3} lower than those indicated, deviation from linearity of plots of \ln [1f] vs. time was considerable from the very early stages of the reactions. Pseudo-first-order rate constants ($k_{\text {obsd }}$) were not dependent on the initial concentration of if ($0.005-0.05 \mathrm{M}$).

Scheme I

Scheme II

(eq 6) where $k_{4}=k_{2} / k_{3}$. This explanation may also be applied to the change of $k_{3}\left(=k_{5} / k_{-4}\right)$ for $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$ in the same order. Now Scheme I appears most appropriate for eq 4. Under the reaction conditions employed for obtaining eq 5, [AsPh_{3}] may well be sufficiently larger than $k_{3}\left(=k_{5} / k_{-4}\right.$ of Scheme I) to eliminate the latter term from eq 4.

The $k_{4} k_{5} / k_{-4}\left(=k_{2}\right)$ value varies over a wide range among the olefins examined (Table III). On the other hand, the variation of $k_{4}\left(=k_{2} / k_{3}\right)$ that we could determine is much narrower. ${ }^{24}$ These trends would be explained if we assume it is k_{5} that strongly reflects the electrophilic nature of the olefin. ${ }^{26}$ Less electrophilic olefins, typically styrene, did accelerate the reductive elimination of $\mathbf{1 f}$, but not remarkably enough to allow accurate determination of k_{2} values. Of further note is that k_{4} / k_{-4} may well be so small ${ }^{27}$ that k_{5} for each olefin included in Table III would be much larger than k_{2}, and hence $k_{1}\left(4 \times 10^{-4} \mathrm{~h}^{-1}\right)$ of 1 f at $0^{\circ} \mathrm{C}$ which could be calculated by extrapolation. These assumptions will be confirmed by separate experiments in the next section.

It should be noted here that addition of strong electrophiles other than the olefinic substrates was not so effective in enhancing the $\mathrm{C}-\mathrm{C}$ coupling of 1 , as exemplified by facile $\mathrm{Pd}-\mathrm{Ar}$ bond cleavage by N -bromosuccinimide or $\mathrm{Br}_{2}{ }^{16 \mathrm{~b}}$ Metallic oxidants such as $\mathrm{IrCl}_{6}{ }^{2-}$ and CuCl_{2} were also ineffective. Addition of fumaronitrile and allyl chloride to the η^{1}-allyl complex 2 caused no acceleration of the reductive elimination. Furthermore, maleic anhydride and 2 induced very rapid formation of propene, possibly via elec-tron-transfer activation of the Pd-allyl bond. ${ }^{16 \mathrm{~b}}$

Formation and Reductive Elimination of η^{3}-Allyl(aryl) (olefin)palladium. Attempted preparation of $\mathrm{Pd}\left(\eta^{3}\right.$-allyl) $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right)$ (olefin) by the reaction of $\left[\mathrm{Pd}\left(\eta^{3} \text {-allyl }\right) \mathrm{Cl}\right]_{2}$ with $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{ZnCl}$ in the presence of excess olefin (e.g., styrene) resulted in Pd metal deposition even at $-50^{\circ} \mathrm{C}$. However, similar treatment of the chloride dimer/styrene mixture with $\mathrm{Tl}\left(\mathrm{C}_{6} \mathrm{H}\right.$ -$\left.\mathrm{Cl}_{4}-2,3,5,6\right)_{3}$ at $-60^{\circ} \mathrm{C}$ resulted in almost quantitative formation of complex 8a as deduced by ${ }^{1} \mathrm{H}$ NMR spectroscopy measured at $-30^{\circ} \mathrm{C}$. This spectral assignment was unambiguously made by referring to the platinum analogue $\operatorname{Pt}\left(\eta^{3}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ (styrene), which was isolated stable. The other substituted styrene complexes $\mathbf{8 b - f}$ were identified similarly. Attempts to isolate 8a-f in a pure state were unsuccessful. Dimethyl maleate complex 8 g was also confirmed unambiguously at $-45^{\circ} \mathrm{C}$, although 8 g underwent reductive elimination rather
(24) The order of k_{4} for the reaction of if with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{Br}$ $>\mathrm{Cl}>\mathrm{OAc}$), though narrow in the range, is similar to that of the apparent second-order rate constants for the reaction of 1a with these allyl compounds. ${ }^{23}$ However, the latter constants might not necessarily correspond to k_{4} of eq 6 , for the pseudo-first-order rate constants for the reaction of 19 with $\mathrm{CH}_{2}=$ $\mathrm{CHCH}_{2} \mathrm{X}$ were measured without added PPh_{3} and found to depend, unlike in the case of 1 f , on the initial concentration of 1 a used. It is possible that the reaction scheme for $\mathbf{1 a}$ is somewhat different from that for $1 \mathbf{1 f}$.
(25) Kurosawa, H.; Emoto, M.; Urabe, A. J. Chem. Soc., Chem. Commun. 1984, 968.
(26) Similar trends were observed in the reaction of dialkylnickel complexes with olefins. ${ }^{8 /}$
(27) We could not detect the olefin-coordinated intermediate 6 by ${ }^{1} \mathrm{H}$ NMR spectra during the reductive elimination (Experimental; however, see the next section).

Table IV. Equilibrium Constants ($K_{\text {eq }}$) for Equation 10^{a}

Y	$K_{\text {eq }}$	Y	$K_{\text {eq }}$
$4-\mathrm{OMe}$	1.2	$4-\mathrm{NO}_{2}$	0.74
$4-\mathrm{Me}$	1.2	$3-\mathrm{NO}_{2}$	0.63
$4-\mathrm{Cl}$	0.86		

${ }^{a}$ In CDCl_{3} at $-30^{\circ} \mathrm{C}$.

Table V. Rate Constants (k_{7}) for Equation 11^{a}

complex	temp, ${ }^{\circ} \mathrm{C}$	$k_{7}, \mathrm{~h}^{-1}$	complex	temp, ${ }^{\circ} \mathrm{C}$	$k_{7}, \mathrm{~h}^{-1}$
$\mathbf{8 a}$	10	$0.281^{b, c}$	$\mathbf{8 f}$	10	$\mathbf{2 . 4 4}$
$\mathbf{8 b}$	10	0.136^{b}		-10	0.175
$\mathbf{8 c}$	10	0.221^{b}	$\mathbf{8 g}$	-45	2.71^{d}
$\mathbf{8 d}$	10	1.01^{b}	$\mathbf{8 h}$	-10	1.23
$\mathbf{8 e}$	10	5.48^{b}	$\mathbf{8 i}$	-10	2.56^{e}

${ }^{a}$ In toluene; $[8]=0.05 \mathrm{M}$ and [olefin] $=0.50 \mathrm{M}$ except as noted. ${ }^{6}$ Initial rate. ${ }^{c}$ [Olefin] $=0.25,0.50$, and $1.0 \mathrm{M} .{ }^{d}$ In CDCl_{3}. ${ }^{e}$ [Ole$\mathrm{fin}]=0.50$ and 1.0 M .

Figure 1. Hammett plots for $K_{\mathrm{eq}}(\mathrm{eq} 10, \square)$ and k_{7} (eq 11,0).
rapidly even at this temperature (see below). Methyl acrylate and acrylonitrile complexes $\mathbf{8 h}$ and $\mathbf{8 i}$ were also formed at -60 ${ }^{\circ} \mathrm{C}$, but their spectra were too complicated to be resolved well.

a: olefin $=\mathrm{CH}_{2}=\mathrm{CHC}_{8} \mathrm{H}_{5}$
b: olefin $=\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe-4}$
c: olefin $=\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
d: olefin $=\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$
e: oletin $=\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$
f: olef in $=\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-3$
g: olefin $=(Z) \cdot \mathrm{MeOOCCH}={ }_{2}=\mathrm{CHCOOMe}$
h: olefin $=\mathrm{CH}_{2}=\mathrm{CHCOOMe}$
i : olefin $=\mathrm{CH}_{2}=\mathrm{CHCN}$
The ready coordination of olefins in $\mathbf{8}$ appears of particular relevance to the regiocontrolled steroid synthesis from a η^{3}-allylpalladium chloride dimer and organozirconium reagent. ${ }^{3 e}$ Key to the mechanism in this transformation is the coordination of olefinic ligands to the η^{3}-allylpalladium moieties. However, olefins do not usually form any complex with $\left[\mathrm{Pd}\left(\eta^{3} \text {-allyl }\right) \mathrm{Cl}\right]_{2}{ }^{28}$ including allyl $=\mathrm{CH}_{2} \mathrm{CMeCH}_{2}$ utilized in our experiment above, stable enough to be detected spectroscopically. Thus, formation of 8 may give strong credence to the proposed mechanism in the steroid synthesis.
The relative stability of substituted styrene complexes (eq 10) was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-30{ }^{\circ} \mathrm{C}$. The equilibrium constants are shown in Table IV and a Hammett plot is given in Figure 1. The data indicate that the palladium atom in 8 is only very weakly electrophilic in nature toward olefin (Hammett $\rho=-0.25, r=0.960$). This trend is in sharp contrast
(28) Volger, H. C.; Vrieze, K.; Lemmers, S. W. F. M.; Praat, A. P.; van Leeuwen, P. W. N. M. Inorg. Chim. Acta 1970, 4, 435.

Figure 2. Total energy change along the hypothetical path for reductive elimination of 11a (D) and 13 a (0).
to the much more electrophilic nature of Pd in other complex systems. ${ }^{29}$
$\operatorname{Pd}\left(\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)+$

$$
\begin{equation*}
\mathrm{Pd}=\mathrm{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{HCl}_{4}-2,3,5,6\right) \tag{10}
\end{equation*}
$$

Complexes 8 underwent reductive elimination rapidly at higher temperatures to give relatively high yields ($>80 \%$) of the coupling product (eq 11). The rate was first order in the complex, even though kinetic behavior in the case of a series of styrene complexes was not very clean after ca. I half-life, presumably owing to lack of suitable ligands for stabilizing $\operatorname{Pd}(0)$ species; similar observations have been noted previously in both spontaneous and olefin-promoted reductive elimination of 1 . The rates of eq 11 for $8 \mathbf{a}$ and 8 i were found to be independent of the amount of free olefin added ($0.25-1.0 \mathrm{M} ;[8]=0.05 \mathrm{M}$). The k_{7} values determined for several olefins are shown in Table V. A Hammett plot for k_{7} of substituted styrene complexes is shown in Figure 1. For comparison, the rate constants at $10,-10$, and $-45{ }^{\circ} \mathrm{C}$ for the reductive elimination of $\mathrm{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{HCl}_{4}\right)\left(\mathrm{AsPh}_{3}\right)(1 \mathrm{j})$ were estimated as $1 \times 10^{-6}, 2 \times 10^{-8}$, and $2.5 \times 10^{-12} \mathrm{~h}^{-1}$, respectively, by extrapolation with the activation parameters determined at much higher temperatures (Experimental Section). It now became quite evident that these values are by far smaller than k_{7} in Table V.

In a series of substituted styrene complexes, a complex containing the more electron-withdrawing olefin gives the larger k_{7} value, with the ρ value of the Hammett equation being 1.42 (r $=0.983$). This trend, together with other data in Table V, unambiguously confirms the suggestion described in the last section that the complex having the more electrophilic olefin reacts more rapidly. Furthermore, comparison of the two Hammett ρ values for eq 10 and 11 suggests a greater sensitivity of the rate constant $\left(k_{7}\right)$ than of the equilibrium constant $\left(K_{\mathrm{eq}}\right)$ to the electronic factor of the olefin substituent. This is also in line with the rate data shown in Table III that are associated with Scheme I; namely, the variation of $k_{2} / k_{3}\left(=k_{4}\right)$ is narrower than that of $k_{2}(=$ $k_{4} k_{5} / k_{-4}$).

Molecular Orbital Analysis of Reductive Elimination of η^{3} - and η^{1}-Allylpalladium Complexes. In order to gain a theoretical insight

[^3]Scheme III

into reactivity patterns of the allylpalladium complexes, we simulated the three reaction pathways (Scheme III) based on the extended Hückel method. We first compare energetics of eq 12-14 for phosphine-coordinated models, 9a, 11a, and 13a, and then examine effects of substituting ethylene for $\mathrm{PH}_{3}(\mathbf{9 b}, \mathbf{1 1 b}, \mathbf{1 3 b})$ on these reactions.
(i) η^{3}-Allyl vs. η^{1}-Allyl Intermediate. Reductive elimination of η^{1}-allyl and CH_{3} in eq 12 and $13\left(\mathrm{~L}=\mathrm{PH}_{3}\right)$ was simulated in a manner ${ }^{30}$ similar to those reported for dimethylpalladium models, $\mathrm{Pd}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{PH}_{3}\right)_{2}$ and $\operatorname{Pd}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{PH}_{3}\right)$. $^{7 \mathrm{c}}$ We found the reaction of the four-coordinate complex 9a meets a notably higher barrier (1.6 eV) than that of the three-coordinate complex $11 \mathrm{a}(1.0 \mathrm{eV})$. This trend compares well with the different barriers of the ethane elimination from $\mathrm{Pd}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{PH}_{3}\right)_{2}(1.7 \mathrm{eV})$ and $\mathrm{Pd}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{PH}_{3}\right)$ $(1.1 \mathrm{eV}) .^{7 c}$

The coordination geometry of the η^{3}-allyl in 13a was set (see Appendix) by referring to some crystal structures of η^{3}-allyl complexes of Pd and Pt containing the relevant ligand groups. ${ }^{31,32}$ With the optimized angles of $\theta_{1}=125^{\circ}$ and $\theta_{2}=105^{\circ}$, we obtained the energy of 13 a as 0.20 eV lower than that of 11a, in harmony with the observed geometrical preference. However, in view of our failure to observe, in ${ }^{1} \mathrm{H}$ NMR spectra of 1 at room
(30) We varied the three geometrical parameters simultaneously in describing the reductive elimination of $9 a$ and $11 a$ as was done for the dimethyl models. These are the elongation of the $\mathrm{Pd}-\mathrm{C}$ distances, the rocking motion of η^{1}-allyl and CH_{3}, α (see 15), and the C-Pd-C angle. For the reaction of 9a, the P-Pd-P angle was also changed at the same time. Due to steric interferences, the $C=C$ part of 9 and 10 finds the minimum energy position at one rotameric form shown in 16 where the dihedral angle between $\mathrm{Pd}-$ $C^{1}-C^{2}$ and $C^{1}-C^{2}-C^{3}$ planes is around 90°. In 11 and 12 , the energy of 16 is almost the same as that of another rotamer in which C^{2} and CH_{3} are trans to each other.

15

${ }^{13}$
(31) (a) Mason, R.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1966, 26. (b) Mason, R.; Whimp, P. O. J. Chem. Soc. A 1969, 2709. (c) Brock, C. P.; Attig, T. G. J. Am. Chem. Soc. 1980, 102, 1319. (d) Godleski, S. A.; Gundlack, K. B.; Ho, H. Y.; Keinan, E.; Frolow, F. Organometallics 1984, 3, 21. (e) Jolly, P. W. Angew. Chem., Int. Ed. Engl. 1985, 24, 283.
(32) (a) Miki, K.; Kai, Y.; Kasai, N.; Kurosawa, H. J. Am. Chem. Soc. 1983, 105, 2482. (b) Miki, K.; Yamatoya, K.; Kasai, N.; Kurosawa, H.; Emoto, M.; Urabe, A. J. Chem. Soc., Chem. Commun. 1984, 1520. (c) Miki, K.; Yamatoya, K.; Kasai, N.; Kurosawa, H.; Emoto, M.; Urabe, A.; Tatsumi, K.; Nakamura, A., manuscript in preparation. (d) Miki, K.; Kasai, N.; Kurosawa, H., unpublished.

Figure 3. Overlap population change in reaction of $\mathbf{1 3 a}$ as the function of $\mathrm{Me}-\mathrm{C}^{1}$ distance: $\mathrm{C}^{1}-\mathrm{C}^{2}(\Delta) ; \mathrm{C}^{2}-\mathrm{C}^{3}(0) ; \mathrm{Pd}^{1} \mathrm{C}^{1}(\mathrm{D}) ; \mathrm{Pd}^{2} \mathrm{C}^{2}(\otimes)$; $\mathrm{Pd}_{-\mathrm{C}^{3}}(\mathbf{0})$.
temperature, a spontaneous syn-anti allyl proton exchange which is expected to proceed through a $\pi \rightleftarrows \sigma$ rearrangement via an intermediate similar to 11a, it may well be that our calculations somewhat underestimated the energy difference between 13a and 11a.

As for the simulation of the reaction pathway of eq 14, a full geometrical optimization for searching for the transition state 14a appears too difficult to attain. Instead, we employed a simplified approach, by varying primarily the parameters shown in 13 and 17 (for details, see Appendix). The calculated energy curve along the model reaction coordinate is shown in Figure 2.33 Also shown in this figure is the energy profile for the reaction of the threecoordinate η^{1}-allyl model 11a. ${ }^{33}$

The potential energy curve for the reaction of $13 a$ indicates that the intramolecular rearrangement from a η^{3}-allyl(methyl) to a η^{2}-butene complex occurs smoothly, with a barrier of 1.05 eV . The aspect of the growth of the η^{2}-butene complex character in the course of the reaction may be illustrated in a somewhat simplified manner as shown in Figure 3.

In Figure 3 we compare the change of the $\mathrm{C}^{1}-\mathrm{C}^{2}$ and $\mathrm{C}^{2}-\mathrm{C}^{3}$ overlap populations as a function of the $\mathrm{Me}-\mathrm{C}^{1}$ distance, while keeping the $\mathrm{C}^{1}-\mathrm{C}^{2}, \mathrm{C}^{2}-\mathrm{C}^{3}, \mathrm{Pd}-\mathrm{Me}$, and $\mathrm{Pd}-\mathrm{C}$ (allyl) distances unchanged from those of 13a. It is apparent that two $\mathrm{C}-\mathrm{C}$ bonds in the $\mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{C}^{3}$ skeleton become progressively asymmetrical toward $\mathrm{C}^{1}-\mathrm{C}^{2}=\mathrm{C}^{3}$ as the $\mathrm{Me}-\mathrm{C}^{1}$ bond is formed. Also shown in Figure 3 is the change of the $\mathrm{Pd}-\mathrm{C}($ allyl) overlap population. Interestingly, the $\mathrm{Pd}-\mathrm{C}^{2}$ and $\mathrm{Pd}-\mathrm{C}^{3}$ overlap populations are almost unchanged, so that the original $\mathrm{Pd}-\mathrm{C}^{2}$ and $\mathrm{Pd}-\mathrm{C}^{3}$ bond strengths are retained in the course of the reaction.
In Figure 2 we note that the energy maximum (14a) for eq 14 ($\mathrm{L}=\mathrm{PH}_{3}$) lies ca. 0.15 eV lower than that (12a) for eq 13 (L $=\mathrm{PH}_{3}$). This agrees with our proposal concerning the relative ease of reductive elimination of $\mathbf{1}$ directly through the η^{3}-allyl form

[^4]

Figure 4. Orbital energy diagram for reactions of 11a \rightarrow 12a and 13a $\rightarrow 14 \mathrm{a}$.
and through 5. Furthermore, the lower barrier for eq 13 ($\mathrm{L}=$ $\left.\mathrm{PH}_{3}\right)$ than for eq $12\left(\mathrm{~L}=\mathrm{PH}_{3}\right)$ agrees with the lack of coupling path from intermediate 4 discussed before.

The orbital diagram for the reaction of 11a and 13a is shown in Figure 4. It seems somewhat difficult to deduce the relative stability of 11 a vs. 13a and 12 a vs. 14a solely from this diagram. Nevertheless, the extra bond energy gained by the coordination of the $\mathrm{C}=\mathrm{C}$ part of the allyl ligand to Pd may contribute to the overall stabilization of 13a relative to 11a and that of 14a relative to 12a. In this regard, retention of the $\mathrm{Pd}-\mathrm{C}^{2}$ and $\mathrm{Pd}-\mathrm{C}^{3}$ bond strength as is reflected in the overlap population change in Figure 3 in the reaction path of eq 14 seems instructive. Although the $\mathrm{Me}-\mathrm{C}^{1}$ overlap population is larger in 12a (0.371) than in 14a (0.321), the sum of $\mathrm{Pd}-\mathrm{C}$ (allyl) and $\mathrm{Pd}-\mathrm{CH}_{3}$ overlaps in the latter (0.256) is sufficiently larger than that in the former (0.123) to overcome the $\mathrm{Me}-\mathrm{C}^{1}$ overlap disadvantage.
(ii) Effect of Olefin Coordination. In a manner quite analogous to those used for the PH_{3}-coordinated models, we calculated the potential energy curves for the reactions of ethylene-coordinated models, 9b, 11b, and 13b (eq 12, 13, 14; $\mathrm{L}=\mathrm{CH}_{2}=\mathrm{CH}_{2}$). It was found that only the reaction of the η^{3}-allyl complex, $\mathbf{1 3 b}$, gains a lower barrier than that of $\mathbf{1 3 a}$ (by 0.12 eV), while those of 9 b and 11 b require a higher barrier than those of 9 a and 11a, respectively (both by ca. 0.1 eV). We attribute these results as primarily due to stabilization of the transition state in the reaction of the η^{3}-allyl-(η^{2}-ethylene) complex as discussed below.

First we note that the energy of the transition state of the η^{3}-allyl-(η^{2}-ethylene) model 14 b lies ca. 0.36 eV lower than that of the η^{1}-allyl counterpart $\mathbf{1 2 b}$. This difference is considerably larger than that in the PH_{3} complexes shown before (14a vs. 12a; 0.15 eV). In contrast, on the reactant side the energy difference between the ethylene-coordinated η^{3} - and η^{1}-allyl models (13b vs. $11 \mathrm{~b} ; 0.2 \mathrm{eV}$) is almost the same as that in the PH_{3} case (13a vs. 11a).

In order to look into the Pd -ethylene interaction in the η^{3}-allyl complexes, we made our calculations using the $\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right)$ fragments ${ }^{34}$ of $\mathbf{1 3 b}$ and $\mathbf{1 4 b}$. The fragment orbitals relevant to π interaction are shown in Figure 5. The figure exhibits a notable rise of the fragment orbital, which is suited for the π back-bonding with the π^{*} of in-plane coordinated ethylene on going from 13b
(34) The reaction barrier for this hypothetical ligand free η^{3}-allyl model was almost the same as in eq $14\left(\mathrm{~L}=\mathrm{PH}_{3}\right)$.

Figure 5. π back bond interaction in 13b (left) and 14b (right).
Table VI. Relative Energy and Overlap Population of In-plane and Upright Ethylene Complexes

		$O P[\mathrm{Pd}-\mathrm{C}(\text { ethylene })]^{b}$	
	$\Delta E,{ }^{a} \mathrm{eV}$	in-plane	upright
$\mathbf{1 1 b}$	0.17	0.307	0.314
12b	-0.09	0.321	0.305
13b	0.01	0.333	0.307
14b	-0.24	0.341	0.296

${ }^{a} E_{\mathrm{Inp}}-E_{\mathrm{Up}} \cdot{ }^{b}$ Total Pd-C overlaps.
to $\mathbf{1 4 b}$, while the other orbital $\mathrm{d}_{y z}$, suited for the π interaction with upright ethylene, remains constantly low. Thus, the more effective π back-bonding is expected in $\mathbf{1 4 b}$ with the in-plane coordinated ethylene than in any other situation. This is indeed confirmed by the total energy and the Pd-C(ethylene) overlap populations in 13b and 14b with the in-plane and upright geometries, as summarized in Table VI. Also included in this table are the corresponding data for the η^{1}-allyl complexes, 11b and $\mathbf{1 2 b}$.

We also calculated the orbitals of the η^{1}-allyl fragments, Pd-$\left(\eta^{1}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right)$, and found that the energy levels of the d orbitals responsible for π interaction with ethylene in $\mathbf{1 1 b}$ and $\mathbf{1 2 b}$ are much the same as those of the corresponding d orbitals of 11a and 12a shown in Figure 4. Moreover, the latter two may in turn be regarded as the fragments for ethylene coordination in 9 b and 10b. ${ }^{35}$ In Figure 4 it is seen that on going from 11a to 12a $\mathrm{d}_{x y}$ of 11a rises to only a small extent and $\mathrm{d}_{y z}$ and $\mathrm{d}_{x z}$ remain almost unchanged. Thus, in the transition state of the reaction of the η^{1}-allyl models ($\mathbf{1 0 b}, \mathbf{1 2 b}$) π back-bonding interaction is not expected to be strong enough to help stabilize the transition state (see Table VI). Rather, the strong donor character of the ethylene π orbital relative to PH_{3} is probably a cause for the increased barrier in these reactions when compared to those in the PH_{3} cases.

Concluding Remarks. In the reductive elimination of $\operatorname{Pd}\left(\eta^{3}-\right.$ allyl)(Ar)L in the presence of free ligand L, the $C-C$ bond formation proceeds without participation of the η^{3} - to η^{1}-allyl conversion as long as L is PPh_{3} or less basic phosphines. Dissociation of L also is not significant during the $\mathrm{C}-\mathrm{C}$ bond formation. When L is replaced by an olefin, it plays a role apparently specific to the η^{3}-allyl system in lowering the barrier to the $\mathrm{C}-\mathrm{C}$ bond formation.

Experimental Section

Preparation of 1 and 2. In a typical procedure, $n-\mathrm{BuLi}(8.7 \mathrm{mmol})$ in hexane was added under dry nitrogen to a THF solution ($30 \mathrm{~cm}^{3}$) of

1,4 -dichlorobenzene ($1280 \mathrm{mg} ; 8.7 \mathrm{mmol}$) cooled at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 1 h . Then a THF solution ($30 \mathrm{~cm}^{3}$) of ZnCl_{2} ($1180 \mathrm{mg} ; 8.7 \mathrm{mmol}$) was added, and the temperature was raised to $-50^{\circ} \mathrm{C}$. A THF solution $\left(65 \mathrm{~cm}^{3}\right)$ of $\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)$ ($1940 \mathrm{mg} ; 4.36 \mathrm{mmol}$) was added dropwise. After the mixture was stirred for 2 h , a MeOH solution of $\mathrm{HCl}(4.35 \mathrm{mmol})$ was added. The solvents were evaporated completely under vacuum while the temperature of the reaction vessel was maintained below $0^{\circ} \mathrm{C}$. The residual solids (pale yellow) were washed by cold methanol and water and dried under vacuum (yield of crude product, ca. 80%). They were recrystallized from benzene $/ n$-hexane in a refrigerator (below $-10^{\circ} \mathrm{C}$) to give almost colorless microcrystalline solids of 1a. Similar procedures gave 1 i (colorless crystal) and $\mathbf{1 f}-\mathbf{h}$ (pale-red or red-brown crystals). $\mathbf{1 j}$ and $\mathbf{2}$ were prepared in a manner similar to those reported for analogous complexes. ${ }^{11.16}$ Melting point (with decomposition): $1 \mathbf{1 a}, 88^{\circ} \mathrm{C}$; $\mathbf{1 f}, 142-143^{\circ} \mathrm{C} ; \mathbf{1 g}$, $89-90^{\circ} \mathrm{C} ; \mathbf{1 h}, 99-100^{\circ} \mathrm{C} ; \mathbf{1}, 120^{\circ} \mathrm{C} ; \mathbf{1 j}, 145^{\circ} \mathrm{C} ; \mathbf{2}, 99-102^{\circ} \mathrm{C}$. These products gave satisfactory analytical results (C, H). Typical allyl proton ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ (for proton numbering scheme, see the structure for 18): 1a, $\delta 2.57$ (d, $J_{\mathrm{H}}=13 \mathrm{~Hz}, \mathrm{H}^{1}$), 3.01 (dd, $J_{\mathrm{H}}=12, J_{\mathrm{P}}=10 \mathrm{~Hz}$, H^{4}), 3.51 (dd, $J_{\mathrm{H}}=7$ and $2.5 \mathrm{~Hz}, \mathrm{H}^{2}$), $3.93\left(\mathrm{br} \mathrm{t}, J_{\mathrm{H}}=J_{\mathrm{P}}=7 \mathrm{~Hz}, \mathrm{H}^{3}\right.$), $5.09(\mathrm{~m}, \mathrm{R}) ; 1 \mathrm{f}, \delta 2.58\left(\mathrm{~d}, J_{\mathrm{H}}=14 \mathrm{~Hz}, \mathrm{H}^{1}\right), 2.96\left(\mathrm{~d}, J_{\mathrm{H}}=14 \mathrm{~Hz}, \mathrm{H}^{4}\right)$, $3.68\left(\mathrm{dd}, J_{\mathrm{H}}=7.5\right.$ and $2.5 \mathrm{~Hz}, \mathrm{H}^{2}$), 3.92 (br d, $J_{\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{H}^{3}$), 4.99 (m, R); 1i, $\delta 1.67(\mathrm{~s}, \mathrm{R}), 2.57\left(\mathrm{~s}, \mathrm{H}^{1}\right), 2.88\left(\mathrm{~d}, J_{\mathrm{P}}=9 \mathrm{~Hz}, \mathrm{H}^{4}\right), 3.34$ (d, $\left.J_{\mathrm{H}}=3 \mathrm{~Hz}, \mathrm{H}^{2}\right), 3.76\left(\mathrm{dd}, J_{\mathrm{P}}=5 \mathrm{~Hz}, \mathrm{H}^{3}\right) ; 2, \delta 2.95\left(\mathrm{brm}, \mathrm{PdCH}_{2}\right), 4.45$ (brd, $\left.J_{\mathrm{H}}=15 \mathrm{~Hz},=\mathrm{CHH}\right), 4.60\left(\mathrm{brd}, J_{\mathrm{H}}=10 \mathrm{~Hz},=\mathrm{CHH}\right), 6.29(\mathrm{~m}$, $-\mathrm{CH}=), 1.5-2.2\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$.

18
The phenyl analogue 1 k was prepared in a manner similar to that for 1a from PhZnCl and $\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)$ except that the reaction temperature was maintained at $-70^{\circ} \mathrm{C}$, evaporation of the solvents was done at ca. $-20^{\circ} \mathrm{C}$, and the recrystallization step was omitted. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ at $-30^{\circ} \mathrm{C}: \delta 2.78\left(\mathrm{~d}, J_{\mathrm{H}}=13 \mathrm{~Hz}, \mathrm{H}^{1}\right), 2.75\left(\mathrm{t}, J_{\mathrm{H}}=J_{\mathrm{P}}=12\right.$ $\left.\mathrm{Hz}, \mathrm{H}^{4}\right), 3.53\left(\mathrm{~d}, J_{\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{H}^{2}\right), 3.76\left(\mathrm{brt}, J_{\mathrm{H}}=J_{\mathrm{P}}=7 \mathrm{~Hz}, \mathrm{H}^{3}\right), 5.43$ (m, R).

Identification of 8 by ${ }^{1} \mathbf{H}$ NMR Spectra. An NMR tube containing a deaerated CDCl_{3} solution $\left(0.1 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right) \mathrm{Cl}\right]_{2}(0.1$ mmol) and appropriate olefin ($0.2-1.0 \mathrm{mmol}$) was fitted with a serum cap and cooled to $-60^{\circ} \mathrm{C}$. To this solution was added, drop by drop, a CDCl_{3} solution ($0.4 \mathrm{~cm}^{3}$) of $\mathrm{Tl}\left(\mathrm{C}_{6} \mathrm{HCl}_{4}-2,3,5,6\right)_{3}{ }^{36}(0.1 \mathrm{mmol})$ with a hypodermic syringe to give rise to white precipitates of $\mathrm{Tl}\left(\mathrm{C}_{6} \mathrm{HCl}_{4}\right)_{2} \mathrm{Cl}$. After the solution was left to stand at this temperature for 0.5 h , the tube was placed in a probe kept at -45 or $-30^{\circ} \mathrm{C}$. Spectra showed, within the detection limit, that all of the η^{3}-methallylpalladium chloride had reacted to form 8. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, see 18 where $\mathrm{L}=$ olefin): 8a (major isomer), $\delta 1.35(\mathrm{~s}, \mathrm{Me}), 2.92\left(\mathrm{~s}, \mathrm{H}^{4}\right), 3.40\left(\mathrm{~s}, \mathrm{H}^{1}\right), 3.73\left(\mathrm{~s}, \mathrm{H}^{3}\right)$, $3.78\left(\mathrm{~s}, \mathrm{H}^{2}\right), 4.06\left(\mathrm{~d}, J_{\mathrm{H}}=9 \mathrm{~Hz}=\mathrm{C} H \mathrm{H}\right), 4.52\left(\mathrm{~d}, J_{\mathrm{H}}=14 \mathrm{~Hz},=\right.$ $\mathrm{CHH}), 6.20\left(\mathrm{dd},=\mathrm{CH}-\right.$); 8a (minor isomer) $\delta 1.83(\mathrm{~s}, \mathrm{Me}), 2.10\left(\mathrm{~s}, \mathrm{H}^{\mathrm{l}}\right)$, $2.98\left(\mathrm{~s}, \mathrm{H}^{4}\right), 4.03\left(\mathrm{~d}, J_{\mathrm{H}}=9 \mathrm{~Hz}=\mathrm{CHH}\right), 4.61\left(\mathrm{~d}, J_{\mathrm{H}}=14 \mathrm{~Hz},=\right.$ $\mathrm{CHH}), 5.96(\mathrm{dd},=\mathrm{CH}-) ; 8 \mathrm{~g}, \delta 1.98(\mathrm{~s}, \mathrm{Me}), 3.26\left(\mathrm{~s}, \mathrm{H}^{4}\right), 3.41$ and 3.77 $(\mathrm{s}, \mathrm{OMe}), 4.37\left(\mathrm{br} \mathrm{s}, \mathrm{H}^{3}\right), 4.71\left(\mathrm{~d}, J_{\mathrm{H}}=10.5 \mathrm{~Hz},-\mathrm{CH}=\right), 4.92(\mathrm{br} \mathrm{s}$, $\left.\mathrm{H}^{2}\right), 5.49(\mathrm{~d},=\mathrm{CH}-), 7.26\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{HCl}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{8 b} \mathbf{-} \mathbf{f}$ are shown in Table S1. Equilibrium constants of eq 10 were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy in a manner quite similar to that reported ${ }^{37}$ for analogous complexes, [Pt -$\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right)$ (styrene) $\left.\left(\mathrm{PPh}_{3}\right)\right]^{+}$and $\mathrm{Pt}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right) \mathrm{Cl}$ (styrene).

Preparation of $\operatorname{Pt}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{CH}_{2}=\mathrm{CHPh}\right)$. To a THF solution $\left(10 \mathrm{~cm}^{3}\right)$ of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Li}(0.15 \mathrm{mmol})$ and styrene $\left(0.5 \mathrm{~cm}^{3}\right)$ kept at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Pt}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right) \mathrm{Cl}(0.1 \mathrm{mmol})$ in THF ($8 \mathrm{~cm}^{3}$). The mixture was warmed to $-50^{\circ} \mathrm{C}$ and kept at this temperature for 1 h. Methanol ($0.2 \mathrm{~cm}^{3}$) was added, and the solvents were evaporated under vacuum at ca. $0^{\circ} \mathrm{C}$. The residue was extracted with $3 \times 10 \mathrm{~cm}^{3}$ of benzene. After the solvent was evaporated under vacuum, the resulting solids were recrystallized from benzene- n-hexane to give colorless plates (40%): $\mathrm{mp} 97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) major isomer, $\delta 1.40(\mathrm{~s}, \mathrm{Me})$, 2.60
(36) Numata, S.; Kurosawa, H.; Okawara, R. J. Organomet. Chem. 1975, 102, 259.
(37) (a) Kurosawa, H.; Asada, N. J. Organomet. Chem. 1981, 217, 259 (b) Kurosawa, H.; Asada, N. Organometallics 1983, 2, 251.
(38) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397.

Table VII. Extended Hückel Parameters

	orbital	$H_{i i}, \mathrm{eV}$	exponent a	
Pd	4 d	-12.02	$5.983(0.5535)+2.613(0.6701)$	
	5 s	-7.32	2.190	
	5 p	-3.75	2.152	
P	3 s	-18.6	1.60	
	3 p	-14.0	1.60	
C	2 s	-21.4	1.625	
	2 p	-11.4	1.625	
H	1 s	-13.6	1.3	

${ }^{a}$ The d function is a double- ζ type.
$\left(\mathrm{s}, J_{\mathrm{Pt}}=61 \mathrm{~Hz}, \mathrm{H}^{4}\right), 3.07\left(\mathrm{~s}, J_{\mathrm{Pt}}=40 \mathrm{~Hz}, \mathrm{H}^{\mathrm{l}}\right), 3.67\left(\mathrm{~d}, J_{\mathrm{H}}=9, J_{\mathrm{Pt}}=\right.$ $54 \mathrm{~Hz}=\mathrm{CHH}), 3.79\left(\mathrm{~s}, \mathrm{H}^{3}\right), 3.90\left(\mathrm{~d}, J_{\mathrm{H}}=13.5, J_{\mathrm{Pt}}=54 \mathrm{~Hz},=\mathrm{CHH}\right)$, $4.02\left(\mathrm{~s}, \mathrm{H}^{2}\right), 5.95\left(\mathrm{dd}, J_{\mathrm{Pt}}=61 \mathrm{~Hz},=\mathrm{CH}-\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ minor isomer, $\delta 1.89(\mathrm{~s}, \mathrm{Me}), 2.11\left(\mathrm{~s}, J_{\mathrm{Pt}_{t}}=30 \mathrm{~Hz} ; \mathrm{H}^{1}\right), 2.52\left(\mathrm{~s}, \mathrm{H}^{4}\right), 4.32(\mathrm{~s}$, H^{2}), $5.32\left(\mathrm{dd}, J_{\mathrm{H}}=9,13.5 \mathrm{~Hz}, \stackrel{\mathrm{CH}}{=} \mathrm{CH}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{Pt}\right) \mathrm{C}, \mathrm{H}$.

Reductive Elimination of $1 \mathrm{a}-\mathrm{i}$ and 2. Amounts of the coupling products 1 -allyl-2,5-dichlorobenzenes formed by reductive elimination of $1 a-i$ and 2 were determined by GLC (SE-30, $3 \mathrm{~mm} \times 2 \mathrm{~m}$) analysis. Standard samples of these materials were prepared by reactions of $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-2,5\right) \mathrm{ZnCl}(20 \mathrm{mmol})$ with $\mathrm{CH}_{2}=\mathrm{CRCH}_{2} \mathrm{Cl}(\mathrm{R}=\mathrm{H}$ or Me$)$ $(25 \mathrm{mmol})$ in the presence of $\operatorname{Pd}\left(\eta^{3}\right.$-allyl $) \mathrm{Cl}(1 \mathrm{mmol})$ in THF $\left(100 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ for 5 h , followed by the usual workup and preparative GLC (SE-30). The compositions were confirmed by mass spectroscopy. Allyl proton ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}, \delta 3.10$ (d, $J_{\mathrm{H}}=$ $\left.6 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 4.76\left(\mathrm{~d}, J_{\mathrm{H}}=16 \mathrm{~Hz}=\mathrm{CHH}\right), 4.81\left(\mathrm{~d}, J_{\mathrm{H}}=9 \mathrm{~Hz}\right.$, $=\mathrm{CH} H$), 5.53 (ddt, $=\mathrm{CH}-$); $\mathrm{CH}_{2}=\mathrm{CMeCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}, \delta 1.48(\mathrm{~s}, \mathrm{Me})$, $3.12\left(\mathrm{~s},-\mathrm{CH}_{2}-\right), 4.52(\mathrm{~s},=\mathrm{C} H \mathrm{H}), 4.72(\mathrm{~s},=\mathrm{CH} H)$.

For a kinetic run of spontaneous reductive elimination, a test tube containing weighed amounts of complex ($0.02-0.04 \mathrm{mmol}$) and L was fitted with a serum cap and filled with nitrogen gas. A nitrogen-saturated solvent ($1-2 \mathrm{~cm}^{3}$) and dodecane (GLC internal reference) were added at $0^{\circ} \mathrm{C}$ with hypodermic syringes. The tube was immersed in a con-stant-temperature water bath. At appropriate intervals an aliquot (ca. $0.04 \mathrm{~cm}^{3}$) was withdrawn by a syringe and poured into an acetone solution ($0.04 \mathrm{~cm}^{3}$) of HCl (ca. 5 equiv per Pd initially weighed) to quench unreacted 1. The resulting solution was analyzed by GLC. The rate data determined in some solvents at different temperatures are summarized in Table S2.

Kinetic runs for olefin-promoted reductive elimination of $\mathbf{1 f}$-h were carried out similarly except that the reaction was triggered by adding appropriate amounts of olefins (or solutions of $(E)-\mathrm{NCCH}=\mathrm{CHCN}$ and $(E)-\mathrm{MeOOCCH}=\mathrm{CHCOOMe}$) by a hypodermic syringe to a toluene solution of $1 \mathrm{f}-\mathrm{h}$ and AsR_{3} at $0^{\circ} \mathrm{C}$. The rate data at several concentrations of olefins and AsR_{3} are summarized in Table S3. For the reactions of allylic electrophiles and fumaronitrile, k_{2} and k_{3} were calculated by least-squares analysis of data ($1 / k_{\text {obsd }}$ vs. [AsR ${ }_{3}$]) at a given [olefin]. k_{2} was also calculated from the relation between $k_{\text {obsd }}$ and [olefin] at a given [AsR_{3}] by use of k_{3} determined above.

Stoichiometry of some of the olefin-promoted reductive elimination was also confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in toluene- d_{8} solutions. No resonances other than those of $1 \mathrm{f}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}-2,5$, and the substrate olefin could be detected. We further tried to examine ${ }^{1} \mathrm{H}$ NMR spectra of reaction systems in which eq 6 was thought to have reached an equilibrium stage. For example, we presumed, on the basis of the order (ca. $1 \mathrm{M}^{-1} \mathrm{~h}^{-1}$) of k_{4} which is rather insensitive to the nature of olefin, that 1 M of olefin substrate is enough to compel the forward path of eq 6 almost into completion in 10 h . At the same time formation of
the coupling product could be suppressed to a very small extent within such duration by proper choice of [AsPh_{3}] (e.g., 0.2 M in the case of $\mathrm{CH}_{2}=\mathrm{CHCN}$). However, under these conditions we could not detect any resonance attributable to reaction intermediates.

Reductive Elimination of $1 \mathbf{j}$ and 8. Reductive elimination of $\mathbf{1 j}$ in toluene- d_{8} was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the same manner as that described before for analogous complexes. ${ }^{11}$ The first-order rate constants thus determined are $3.47 \mathrm{~h}^{-1}\left(120^{\circ} \mathrm{C}\right), 0.520 \mathrm{~h}^{-1}\left(100^{\circ} \mathrm{C}\right)$, and $0.145 \mathrm{~h}^{-1}\left(90^{\circ} \mathrm{C}\right) ; \Delta H^{*}=121 \mathrm{~kJ} / \mathrm{mol}\left(100^{\circ} \mathrm{C}\right)$; and $\Delta S^{\ddagger}=3 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$ $\left(100^{\circ} \mathrm{C}\right)$. The reactions of 8 were also followed by ${ }^{1} \mathrm{H}$ NMR and by GLC methods. For a kinetic run by GLC, a toluene solution ($2 \mathrm{~cm}^{3}$) of an olefin complex (0.1 mmol) and pentadecane (GLC internal reference) was prepared in a test tube at $-60^{\circ} \mathrm{C}$ by the method described before for the NMR measurement. The subsequent procedures were the same as those described above for the reaction of $1 a-i$ and 2 except that the method of quenching the reaction employed an acetone solution of dppe (5 -fold excess) followed by addition of HCl .

Instruments. The following instruments were used: a JEOL PS-100 spectrometer (${ }^{1} \mathrm{H}$ NMR), a Hitachi RMU-6Z mass spectrometer (Mass), and a Hitachi 164 chromatograph (GLC).

Acknowledgment. Partial support of this work by a Grant-in-aid for Special Project Research, Ministry of Education, Science and Culture (61225016), is gratefully acknowledged.

Appendix

The parameters of the extended Hückel calculations ${ }^{38}$ are listed in Table VII. A weighted $H_{i j}$ formula was used for calculations. Geometrical assumptions included the following; η^{3}-allyl of 13, $\mathrm{Pd}-\mathrm{C}^{1}=\mathrm{Pd}-\mathrm{C}^{3}=2.21 \AA, \mathrm{Pd}-\mathrm{C}^{2}=2.17 \AA, \mathrm{C}^{1}-\mathrm{C}^{2}=\mathrm{C}^{2}-\mathrm{C}^{3}=$ $1.40 \AA, \mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{C}^{3}=120^{\circ}$; the angle between the allyl and the coordination planes is 115°; terminal allyl hydrogens are bent back by 10°; other ligands, $\mathrm{C}-\mathrm{H}=1.09 \AA, \mathrm{C}-\mathrm{C}=1.50 \AA, \mathrm{C}=\mathrm{C}($ free $)$ $=1.35 \AA, \mathrm{C}=\mathrm{C}($ coordinated $)=1.40 \AA, \mathrm{P}-\mathrm{H}=1.42 \AA, \mathrm{Pd}-\mathrm{C}$ $\left(\mathrm{sp}^{3}\right)=2.10 \AA, \mathrm{Pd}-\mathrm{C}($ olefin $)=2.15 \AA, \mathrm{Pd}-\mathrm{P}=2.30 \AA, \mathrm{CH}_{3}$, $-\mathrm{CH}_{2}-$, and PH_{3} tetrahedral, $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ trigonal planar, ethylene hydrogens bent back by 10°.

The simulation of eq 14 was done as follows. At the early stages of the reaction, we kept the coordination geometry of the η^{3}-allyl group nearly unchanged from that in 13; unchanged were the coordinates of C^{2} and C^{3}, the $\mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{C}^{3}$ angle, and the angle between the allyl and the coordination planes, while the $\mathrm{C}^{1}-\mathrm{C}^{2}$ distance was set as either 1.40 or $1.50 \AA$, and accordingly the $\mathrm{Pd}-\mathrm{C}^{1}$ distance as either 2.21 or $2.24 \AA$. With such η^{3}-allyl-metal frameworks fixed, we changed the $\mathrm{Me}-\mathrm{C}^{1}$ distance by varying the Pd-Me distance and θ_{1}, with θ_{2}, α_{1}, and α_{2} (see 17) being optimized for a given $\mathrm{Me}-\mathrm{C}^{1}$ distance. At later stages of the reaction we increased Δr_{1} and Δr_{2} and decreased θ_{1} simultaneously, but we maintained the $\mathrm{Pd}-\mathrm{C}^{2}$ and $\mathrm{Pd}-\mathrm{C}^{3}$ distances at nearly $2.2-2.15 \AA$, so as to attain the final product $\operatorname{Pd}\left(\eta^{2}\right.$-but-1-ene $)\left(\mathrm{PH}_{3}\right)$ in which the $\mathrm{Pd}-\mathrm{C}$ (olefin) distance was set as $2.15 \AA$. The $\mathrm{C}^{1}-\mathrm{C}^{2}$ and $\mathrm{C}^{2}-\mathrm{C}^{3}$ distances were fixed at 1.50 and $1.40 \AA$, respectively. The other parameters α_{1}, α_{2}, and θ_{2} were varied for optimization.
Supplementary Material Available: Tables of ${ }^{1} \mathrm{H}$ NMR spectral and kinetic data, and figures for kinetic treatment (11 pages). Ordering information is given on any current masthead page.

[^0]: (1) (a) Department of Applied Chemistry. (b) Department of Macromolecular Science.
 (2) (a) Collman, J. P.; Hegedus, L. S. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1980; p 673. (b) Trost, B. M. Acc. Chem. Res. 1980, 13, 385. (c) Tsuji, J. Organic Synthesis with Palladium Compounds; Springer-Verlag: New York, 1980.
 (3) (a) Goliaszewski, A.; Schwartz, J. Organometallics 1985, 4, 415. (b) Goliaszewski, A.; Schwartz, J. Ibid. 1985, 4, 417. (c) Goliaszewski, A.; Schwartz, J. Tetrahedron 1985, 4l, 5779 . (d) Goliaszewski, A.; Schwartz, J. J. Am. Chem. Soc. 1984, 106, 5028 . (e) Temple, J. S.; Riediker, M.; Schwartz, J. Ibid. 1982, 104, 1310. (f) Hayasi, Y.; Riediker, M.; Temple, J. S.; Schwartz, J. Tetrahedron Lett. 1981, 22, 2629.
 (4) (a) Hiyama, T.; Wakasa, N. Tetrahedron Lett. 1985, 26, 3259. (b) Trost, B. M.; Herndon, J. W. J. Am. Chem. Soc. 1984, 106, 6835. (c) Sheffy, F. K.; Godschalx, J. P.; Stille, J. K. Ibid. 1984, 106, 4833. (d) Consiglio, G.; Morandini, F.; Piccolo, O. J. Chem. Soc., Chem. Commun. 1983, 112. (e) Matsushita, H.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 2882. (f) Hayashi, T.; Konishi, M.; Yokota, K.; Kumada, M. J. Chem. Soc., Chem. Commun. 1981, 313. (g) Cherest, M.; Felkin, H.; Umpleby, J. D.; Davies, S. G. Ibid. 1981, 681.
 (5) Keim, W.; Behr, A.; Roper, M. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Chapter 52.

[^1]: (6) (a) Hayashi, T.; Konishi, M.; Kumada, M. J. Chem. Soc., Chem. Commun. 1984, 107. (b) Consiglio, G.; Morandini, F.; Piccolo, O. J. Am. Chem. Soc. 1981, 103, 1846.
 (7) (a) Moravskiy, A.; Stille, J. K. J. Am. Chem. Soc. 1981, 103, 4182. (b) Ozawa, F.; Ito, T.; Nakamura, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1981, 54, 1868. (c) Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K. Ibid. 1981, 54, 1857. (d) Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4933.
 (8) (a) Yamamoto, T.; Yamamoto, A.; Ikeda, S. J. Am. Chem. Soc. 1971, 93, 3350. (b) Morrell, D. G.; Kochi, J. K. Ibid. 1975, 97, 7262. (c) Tatsumi, K.; Nakamura, A.; Komiya, S.; Yamamoto, A.; Yamamoto, T. Ibid. 1984, 106, 8181. (d) Komiya, S.; Albright, T. A.; Hoffmann, R.; Kochi, J. K. Ibid. 1976, 98, 7255. (e) Braterman, P. S.; Cross, R. J.; Young, G. B. J. Chem. Soc., Dalton Trans. 1977, 1892.
 (9) Åkermark, B.; Ljungquist, A. J. Organomet. Chem. 1979, 182, 59.

[^2]: (10) Vrieze, K. Dynamic Nuclear Magnetic Resonance Spectroscopy; Jackman, L. M., Cotton, F. A., Eds.; Academic: New York, 1975; p 441.
 (11) Numata, S.; Kurosawa, H. J. Organomet. Chem. 1977, 13l, 301.
 (12) Kurosawa, H.; Emoto, M.; Urabe, A.; Miki, K.; Kasai, N. J. Am. Chem. Soc. 1985, 107, 8253.
 (13) (a) Komiya, S.; Akai, Y.; Tanaka, K.; Yamamoto, T.; Yamamoto, A. Organometallics 1985, 4, 1130. (b) Sustman, R.; Lau, J.; Zipp, M. Tetrahedron Lett. 1986, 27, 5207.
 (14) A portion of this section (thermolysis of $\mathbf{1}$) has been communicated in ref 15.
 (15) Kurosawa, H.; Emoto, M. Chem. Lett. 1985, 1161.

[^3]: (29) (a) Kurosawa, H.; Majima, T.; Asada, N. J. Am. Chem. Soc. 1980, 102, 6996. (b) Ban, E.; Hughes, R. P.; Powel, J. J. Organomet. Chem. 1974, 69, 455.

[^4]: (33) The energy maximum of 14 a corresponds to the structure having $\mathrm{Pd}-\mathrm{C}^{1}=2.24 \AA_{\mathrm{Pd}-\mathrm{C}^{2}}=2.15 \AA, \mathrm{Pd}-\mathrm{C}^{3}=2.20 \AA, \mathrm{Pd}-\mathrm{CH}_{3}=2.30 \AA$, $\mathrm{C}^{1}-\mathrm{CH}_{3}=2.10 \AA, \mathrm{C}^{1}-\mathrm{C}^{2}=1.50 \AA, \mathrm{C}^{2}-\mathrm{C}^{3}=1.40 \AA, \alpha_{1}=\alpha_{2}=40^{\circ}, \theta_{2}=$ 114°; the angle between the allyl and the coordination plane is 115°; C^{2} lies $0.40 \AA$ above the coordination plane. The other maximum of 12 a contains the geometries $\mathrm{Pd}^{-} \mathrm{CH}_{3}=\mathrm{Pd}-\mathrm{CH}_{2}=2.30 \AA, \alpha=55^{\circ}, \mathrm{C}-\mathrm{Pd}-\mathrm{C}=36^{\circ}$, $\mathrm{P}-\mathrm{Pd}-\mathrm{CH}_{3}=126^{\circ}$.

